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Bounds on the transport of momentum in turbulent shear flow are derived by 
variational methods. I n  particular, variational problems for the turbulent 
regimes of plane Couette flow, channel flow, and pipe flow are considered. 
The Euler equations resemble the basic Navier-Stokes equations of motion 
in many respects and may serve as model equations for turbulence. Moreover, 
the comparison of the upper bound with the experimental values of turbulent 
momentum transport shows a rather close similarity. The same fact holds with 
respect to other properties when the observed turbulent flow is compared with 
the structure of the extremalizing solution of the variational problem. It is 
suggested that the instability of the sublayer adjacent to the walls is responsible 
for the tendency o f  the physically realized turbulent flow to approach the pro- 
perties of the extremalizing vector field. 

1. Introduction 
A state of motion of a fluid system, which is too complex to allow a descriptioii 

of the velocity field in detail, is usually called turbulent. The appropriate des- 
cription o f  a turbulent system under stationary conditions is given by the time 
averages of the quantities that can be measured experimentally. The goal of a 
theory of turbulence is the deduction of expressions for the time averages from 
the basic Navier-Stokes equations of motion. Equations for the time averages 
can be obtained by taking the corresponding averages of the basic equations. 
Because of the non-linearity of the basic equations, however, it is not possible 
to arrive a t  a complete system of equations for a finite set of time averages. No 
analytical technique seems to be available, which is successful in dealing with 
the coupling of  the infinite set of equations for the time averages without de- 
pending on hypothetical assumptions. In addition, the solution of a large but 
finite number of these equations has in common with the direct computation 
of the turbulent field and subsequent averaging that it involves more information 
than is desired as a final result. For this reason a different approach is used in the 
present paper, which intends to give bounds for averaged quantities rather than 
to determine them exactly. Thus the unavoidable lack of information about the 
averaged quantities is expressed in the partial indeterminacy of the theoretical 
result. 

This approach was used by Howard (1963), when he derived upper bounds 
for the heat transport by turbulent convection in a layer heated from below. 
The idea of the bounding method is to enlarge the unknown class o f  turbulent 
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solutions of the basic equations by considering, for example, all possible fields 
which satisfy the boundary conditions and the energy balance for the turbulent 
velocity field. The maximum of the transport among the enlarged class of fields 
can be determined by variational techniques and provides an upper bound for 
the actual transport by the physically realized turbulent flow. This bound can 
be improved, of course, by imposing additional constraints on the class of 
admissible fields. A most obvious constraint is the equation of continuity. 
Using this constraint, we shall extend the analysis of a previous paper (Busse 
2969a), in which bounds on the momentum transport in turbulent shear flow 
based solely on the energy balance have been derived. We shall refer to this paper 
as (I). The most interesting consequence of the constraint will be the enriched 
structure of the extremalizing vector fields. 

We shall focus the attention on the Couette case as the simplest example for 
momentum transport in turbulent shear flow. After a short recapitulation of 
the variational problem in $ 2  a class of solutions of the corresponding Euler 
equations will be derived in $3 .  The solutions are characterized by a multiple 
boundary-layer structure, which has been discussed in detail in the paper 
(Busse 1969b) on turbulent convection, that we shall refer to as (C). The extrema- 
lizing solutions of the Euler equations have physical significance beyond their 
purpose of providing the upper bound on the transport of momentum. They 
describe a vector field which can be regarded as a model for the physically realized 
turbulence, since the Euler equations resemble the equations of motion in many 
respects. This model may be used to test various assumptions which have been 
introduced in heuristic theories of turbulence. There seems to exist, however, 
an even closer relation between the extremalizing solutions and the observed 
structure of turbulence, as will be shown in $4. This correspondence has been 
demonstrated previously, for the case of turbulent thermal convection, in 
Howard’s paper and in (C). The experimental observations of turbulent Couette 
flow between parallel plates have been less extensive. Still, a close similarity 
can be found in all respects, for which a comparison between the extremalizing 
vector field and the observed turbulent flow is possible. $ 5  and $ 6 describe the 
application of the analogous variational problems to turbulent channel and 
pipe flow. The bound on the turbulent transport of momentum leads in this case 
to upper bounds for the mean pressure gradient and the friction coefficient at  a 
given value of Reynolds number. The detailed observations of turbulent pipe 
flow provide a basis for a direct comparison between the fluctuating part of the 
turbulent velocity field and the extremalizing field. Although the latter is in- 
completely represented by the boundary -layer approximation, a correspondence 
is demonstrated. The striking property of the realized turbulence to approach 
the structure with the quality of optimal transport is discussed in $ 7 .  An 
explanation of this phenomenon is attempted in terms of the stability of the 
laminar sublayer adjacent to the wall. 
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2. The variational problem 
We consider a homogeneous incompressible fluid between two parallel rigid 

plates. The plates are infinitely extended and are moving relative to each other 
with the velocity V, in the direction denoted by the constant unit vector i. 
For the dimensionless description of the problem, we introduce the distance d 
of the plates as length scale, and d2/v  as scale of the time. v is the kinematic 
viscosity of the fluid. The Navier-Stokes equation for the velocity vector V is 

a 
at 

vzv-vp = v*vv+-v. 

It is convenient to introduce a Cartesian system of co-ordinates with the origin 
in the centre between the plates and the z-axis normal to the plates. The boundary 
conditJion for the vector V is given by 

V = T i R e i ,  at z = *+, 
with Re = V,d/v.  We assume that the velocity and the pressure are bounded 
everywhere, and that the average of the velocity components and their products 
over planes z = const. exists. This average will be indicated by a bar. Accord- 
ingly, the vector V can be separated into two parts: 

V = U + 8 ,  with V E T .  

We wish to consider turbulent velocity fields under stationary conditions 
long after any change in the motion of the plates has occurred. It is reasonable 
to define this ease by the assumption that the averages over planes z = const. 
do not depend on time. This assumption allows the deduction (see (I)) of the 
following relation for the fluctuating part fi of the velocity field, 

( l ~ x 8 1 2 ) + ( ( ~ - ( ( a a ) 1 2 ) - - e i . ( ~ ~ )  = 0. ( 2 )  

is the z-component of G, (a is the component parallel to the plates. The angular 
brackets indicate the average over the entire fluid layer. The quantity (i - (ad) 
can be regarded as the convective part of the momentum transport between the 
plates which is added in the case of turbulent flow to the momentum transport 
by viscous diffusion corresponding to the laminar solution with ? = 0. 

The idea of obtaining an upper bound for the convective momentum transport 
is to find the maximum of (i-uw) among a class of vector fields v, which is 
defined by simple constraints, and which contains all possible solutions 8 of the 
equations of motion. In  the following, we shall consider the class of vector fields 
v satisfj~ing the equation of continuity, 

v . v  = 0, (3) 

the boundary condition, v = 0, at z = B, (4) 

{(V x vI2) + {IUW- (uw)12)-B{i. uw) = 0 ( 5 )  and the relation 
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with B as given parameter. It has been shown in (I) that p ( B )  is a monotonic 
function and that the variational problem can be formulated in the following 
form: Given p 2 0, find the minimum B(p)  of the functional, 

among all vector fields v that satisfy the conditions (3) and (4). 
Since the functional (6) is homogeneous of degree zero, the amplitude of the 

solution v remains undetermined. This fact is used to satisfy relation (5) by 

( 7 )  
imposing {ueiw) = p 

as norinalization condition. Since the variational problem does not depend on 
this condition, more convenient conditions will be used in the following in 
place of ( 7 ) .  I n  order to eliminate the constraint (3),  we introduce a representa- 
tion of v in terms of two scalar functions, which holds for arbitrary divergence- 
free vector fields, v = V x (V x kv) + V x k$. 

k is the unit vector in the direction of the z-axis. The Euler equations for the 
variables v and $ corresponding to an extremum of the variational functional 
(6) will be considered in 0 3. 

3. The extremalizing solutions 
For the solution of the variational problem, we introduce the hypothesis that 

the minimizing functions ii, @ are independent of 5.  The question how far this 
hypothesis can be justified will be discussed a t  the end of this section. For 
z-independent ficlds v, the functional (6) becomes similar to thc corresponding 
functional in the case of thermal convection. The similarity becomes apparent 
if a 

a Y  / 3 - $ = u = i  (9) 

is introduced as new variable in place of $, and if the positive term 

is neglected in the denominator of the second term on the right-hand side of 
(6). It will be found that the term (10) vanishes automatically for the solutions 
of the Euler equations. Using the above assumptions, we obtain as functioiial 
in place of (6) 

which is closely related to functional in the case of convection with 0 corres- 
ponding to the fluctuating part of the temperature field. Here and in the following 
w is used as abbreviation for (az/ay2)v. The dissipation term, that is the denomiiia- 
tor of the first term on the right-hand side of ( 1  l ) ,  is the only term that depends 
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on the ratio D of the amplitudes of w and 0 when the product of both amplitudes 
is kept fixed. It reaches a minimum when D is chosen in such a way that 

{I k x VV2vI ') + {I VOJ 2, = 2{ 1 k x VV2wI ')$ { lV812)+ (12) 

holds. Hence the minimum B ( p )  of the functional (11) is identical with the 
minimum of the modified functional, in which the dissipation term is replaced 
according to relation (12). In  order to apply the mathematical results to more 
general cases of shear flow turbulence, we introduce in addition the positive 
function h(z) with the properties 

{(h(z))') = 1, h(+) = h( -a) = ho. 

Thus we obtain, as final version of the variational functional, 

The Couette case considered in 8 3 and 5 4 is recovered by specifying 

h(z) ho = 1 

in the definition (13). Since the functional (13) is homogeneous of degree zero 
with respect to v, as well as with respect to 8, it is convenient to impose as 
normalization conditions 

{weh) = 1, {w') = (8'). 

The form of the functional (13) suggests that the Euler equations have solutions 
for which the y- and the z-dependence separate. It can be shown that a solution 
of this kind determines the minimum B ( p )  for sufficiently small values of p. 
The Euler equations for p = 0 are 

~ - 1 ~ 4 ~  - g m ( o )  - a 2  e = 0, 

aY2 
DV26+ @B(O)W = 0, 

with D denoting the ratio (I k x VV2w I 2)* { 1 VOl 2)-3.  The eigenvalue problem 
described by (15), together with the boundary conditions 

is identical with the problem describing the instability of a layer heated from 
below with respect to two-dimensional disturbances. The minimum eigenvalue 
in the Couette case is B(0) = 241708. 

with #,(y) satisfying the relations, 
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The dependence on N of the variables q5,, w, and 8, has not been denoted ex- 
plicitly. It will be indicated by an upper index N when it becomes necessary to  
distinguish different solutions. It is proposed that the solution of the variational 
problem can be found among the class of solutions (1 6), which includes the separ- 
able solutions corresponding to N = 1. There are some reasons, though no 
formal proof, which suggest that this hypothesis is correct. A discussion of the 
analogous problem in the convection case can be found in (C). 

In  the following we shall restrict ourselves to solutions of the form (16) in the 
limit of large p, in which case boundary-layer techniques become applicable. 
For large ,u the last term in the definition (13) becomes dominant. It reaches its 
minimum when w8 becomes equal to h(z). For a minimum of this relation 
cannot be strictly fulfilled, since the dissipation term diverges owing to the 
boundary conditions. Hence a balance between the two terms on the right-hand 
side of (13),  with w2 tending to zero in a thin boundary layer, will be optimal. 
Since the dissipation term reaches a minimum when the derivatives with 
respect to the z -  and the y-dependence are of the same order, a sequence of 
boundary layers, which allow for a transition from the interior scale to the scale 
of the boundary layer of a, can be expected. In the N boundary layers, each of 
which is characterized by a scale of the order p-"., the functions w,, 0, grow 
from their boundary values, 

w =-w d = 8  = O  a t  z = t + .  
d z "  

On the larger scale of the order ,u+-i where wnp1, On-l are growing w,, 8, 
decay to zero in such a way that the relation, 

w, On + wnw1 On-1 M h,, (1 7)  

is approximately satisfied throughout all but the Nth boundary layer. Physically, 
this boundary-layer structure may be interpreted as the mechanism by which 
eddies of different scale relieve one another in carrying the transport of momen- 
tum. The mathematical description of the structure has to take into account 
that the amplitudes of w, and 8, may be of different orders: 

The respective boundary-layer co-ordinates c, are defined by 

[ , = p r  - 11 (1- 2 + z ) .  

The above description includes the interior region with yo = 0 and Q = z if the 
relation (1 7 )  is replaced in the case n = 1 by 

G ~ O ~  M h(z) for ( ~ T z )  N, 0(1).  (18) 
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Anticipating that the contributions to the integrals {w2) and (02)  from the 
boundary layers do not exceed the contributions from the interior, we require 
so = 0 in accordance with condition (14). We set 

= pqnbi, 

and assume that b: as well as Gn, an, on, on are independent ofp. Then the boundary 
approximation of the functional 

g ( V ( " ,  @N);  p) = 2p1-'N JOm (h, - 8,$AT)2 d&{Gl&h)-2 

is given by 

A 

(19) 

It is readily seen, by analogy with the analysis in (C), that the minimum of 
A 

B with respect to the exponents of p is reached for 

1 - 4-n 2 - 4.4-n 4-" 
rn = ~ 2 - 4-N 7 4n = 2 4 ~  9 2Pn = 9 sn  = 0- 

Accordingly, the p-dependence of the minimum B ( p )  of 98 can be written in the 
form, 

The Euler equations for G,, 0, corresponding to an extremum of the functional 
(13) with respect to the interior dependence of w and 8 are 

h 

&)(p) = F(N)p1/(2-4-N). (20) 

D-l b;G, - p%(h - 8, 8,) + :h(F(N)  + Iom(h0 - &N6iv)2d&)) gl = 0, 

{ ] (21) 
~ r N ( h - 8 1 ~ l ) + : h ( F ( N ) + ~ o m ( h g - a ~ 8 , ) 2 d 5 , ) )  8, = 0, 

where D denotes the ratio between the first and the second square root in (19). 
Since the contributions from the boundary layers to {w2) and {02) are negligible, 
the normalization condition (14) requires that 

{G?) = {@). 

This condition determines D = 1 in accordance with equations (21). Hence 
the parameter D can be neglected in the following, where the Euler equations 
for a,, on, Gn and on are considered; 

15 F L M  41 
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Here and in the following discussion, GlV+, and are assumed to be re- 
placed by zero. In  the region where Gn+,, on+, do not vanish, (23) and (21) yield 

ho-dn$n-Gn+lgn+l = prn-rflb:+l, for n = 1, ..., N -  1,  (24a) 

h(z) - 6, g1 = ,rr~ (bZ- @(z )  ( F ( N )  +I,* (ha- .7,8,)2d<Lv)), (246) 

which indicate that the relations (1  7) and (18) cannot be satisfied exactly. The 
corresponding contributions in the second term on the right-hand side of the 
expression (1  3), however, can be neglected in the boundary-layer approximation 
(19). Further consequences of equations (22), (23), (24) are 

b;2/omU3,2d& = Iom8’2dt&, for n = 1,  ...,A’, (25a)  

(25b) 

(25c )  

(26) 

to,+,= -2 Oi+l= h0-anOn, for n = 1, ..., N -  1, 

Ql = GI = (h(z))*. 

The relations (24) can be used to simplify (22). After eliminating on, we obtain 

for h ’  

w ~ - - b ~ b ~ + , G n  = 0, n = 1,  ..., N - 1. 

This equation holds in the region where anom is growing up to the value h,. 
As soon as this value is reached, Gn+,, gn+, vanish and relations (24) become in- 
correct. Instead, the condition anon w 1 becomes valid. The identical problem 
has been discussed in detail in the convection case (C). For the following we need 
only the results 

The constants (T and /3 have been computed by Howard (1963) and in (C), 

(T = 0-337, 3p = 1.847. 

The relations (27), (25 )  yield 

n=l 

h 

~(ZP), P’) ;p)  = p1/(2-4-N)h0 12c(h$/b,)*+ 12p 

where h, is defined by 

The right side of (28) reaches a minimum when the derivatives with respect to 
the variables b, vanish. This requirement yields N equations, 

hlhO (lh(z)I)  = (0;) = (G;). 
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with the solutions 

(29) 
ij, = { ( 44/3/hl)1-4-”( a//3)i% h$4--)1/(2--4-”), 

b,+l = (b, h,/4*/3)1-4-nb, 4%, for n = 1, . . . , N - 1. 

Accordingly, the minimum &’J)(p) is given by 

(30) &W(p) = pll(2-4-N)J’(N) = pl/(2-4-N)2h0hl( 2 - 4--N)4AJb?. 

Before we draw conclusions from this result we return to the hypothesis that 
the minimizing solution of the functional (6) is independent of x. In the limit 
,u+ 0, this hypothesis has been established by a proof given by Joseph (1966). 
For large values of p, the hypothesis still seems to be correct, though difficult 
to prove. It is of interest to consider the vector fields v independent of y. In  
this case uy vanishes, since only a positive term would be added to the functional 
(6) otherwise. The equation of continuity is satisfied if 

a 
at 

u, E i - u  = -4 ,  

is assumed. Solutions analogous to solutions (16) with a multiple boundary-layer 
structure can be discussed. We shall restrict our attention to the case N = 1, with 

Assuming that the boundary-layer thickness is of the order p-r, and that a 
is of the order p-q, the functional (6) yields terms of the order 

p3r-g, pPf’ , ~ 3 4 1 ,  and , u - F ,  

which indicate that the functional will grow at least like pQ. This consideration 
can be extended to the case N > 1 with the result that the exponents of p of 
B ( p )  are always larger in the y-independent case than in the x-independent case. 
Since the general case can be regarded as a combination of both cases, it seems 
unlikely that the absolute minimum of the functional (6) at given value is reached 
by x-dependent solutions. 

Another reason suggesting the validity of the hypothesis is the fact that the 
absolute minimum among the class (30) of relative minima is given, in limit 
pu-too, by 

&)(p) = h84$(g3/3)*p*, (31) 

which shows the same dependence with respect to p as the solution of the varia- 
tional problem without the constraint of the continuity equation described in 
(I). In  the Couette case, the exact solution of this problem yields 

apt) = (2p)Q, for P+W, 

which differs from the value of (31) for h, = h, = 1 only by a factor of 0.38. 

15-2 
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4. The bound on the momentum transport 
The functions &(N)(p) are asymptotic expressions for the exact minima B N ) ( p )  

in the case when ,u tends to infinity. Because of the monotonic dependence of 
B“)(p) on p, it is reasonable to assume that the boundary-layer representation 
B(iv)(,u) approximates the exact dependence closely at large, but finite, values of 

102 103 104 

+Re 

105 

FIGURE 1. The upper bound for the momentum transport M by turbulent Couette flow. 
The bound for MIRe- 1 has been plotted in comparison with the experimental values 
by Reichardt (1959) for water ( x ) and for air ( + ). The line labelled I describes the asymp- 
totic bound derived without the constraint of the equation of continuity. 

p. To obtain an upper bound for the momentum transport M in turbulent 
Couette flow, the inverse function ,W”(B) of &(N)(,u) has to be considered. The 
maximum of $(N)(Re) provides the upper bound at  a given value of Re, 

M = Re + (6 * is) < Re + maxN($(N)(Re)). 

Figure 1 shows that the upper bound is given by one after the other of the func- 
tions ,W)(Re), starting with ,P(Re) at low values of Re. The comparison with 
the experimental data by Reichardt (1959) shows that the turbulent momentum 
transport amounts only to about & of the upper bound, yet it exhibits a simihr 
dependence on the Reynolds number Re. 

The similarity between the solution of the variational problem and the 
observed turbulent flow is even more pronounced in other aspects of the problem. 
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It is interesting, for instance, to calculate the profile of the mean flow corres- 
ponding to the extremalizing solution in the interior, 

According to relation (24 b) ,  the right side is independent of z in the Couette case, 
and yields - $&)(p) as ,u tends to infinity. Hence, the profile of the extremaliz- 
ing solution has a constant shear, which amounts to $ of the shear of the laminar 

1 
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FIGURE 2. The mean velocity in plane Couette flow measured by Reichardt (1959) a t  
Re = 1200 (o), Re = 2900 ( x ), Re = 5900 (+ ), and Re = 34000 (a). The straight line 
describes the asymptotic profile corresponding to the extremalizing solution of the varia- 
tional problem. 

solution. Since it seems physically reasonable to assume that the turbulent flow 
nearly wipes out the shear in the interior, it is surprising to find that the measure- 
ments of Reichardt (1959) reflect the ‘$-law’ as shown in figure 2. In this respect 
the Couette case differs from the case of thermal convection, in which the mean 
temperature gradient becomes vanishingly small in the interior compared with 
the temperature difference applied at the boundaries. 

The comparison with respect to the fluctuating velocity field is more difficult 
mainly because of the incomplete description by the boundary-layer method. 

15-3 
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The fact that the minimizing vector field is y-independent corresponds to the 
observation (Townsend 1956) that the turbulent momentum transport is 
carried predominantly by wall-attached eddies with a streamwise axis. The 

I 

FIGURE 3. Qualitative sketch of the boundary-layer region of the vector field yielding 
maximum transport of momentum. 

structure of the minimizing vector field has been sketched in figure 3. The thick- 
nesses of subsequent boundary layers differ always by a factor of about 4, 
which becomes the exact factor in the asymptotic case of p tending to infinity. 
Tn this case, the minimum among the functions B@)(p) is determined by 

4N = (h,& ((r/p)g h,/4+/3. (33) 
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Accordingly the following expressions are obtained for the thicknesses d, 
and the wave-numbers a, of the boundary layers in the limit ,u+ 00: 

d, = 1 ~ ~ " ( b , b ~ + ~ ) - B - t h ~ / P 4 " + ~ ,  for n = 1, ..., N -  1, 

a, = ,uqn12b n -+ 4n+3P/h1, 
d - = ,u -r ~ ( b , h , ) - g ~ h l ( ~ / P ) : / P 4 N + 1 ,  1 (34) 

for n = 1, . . . , N .  

The discussion of the structure of the extremalizing field will be resumed in 
3 6, where turbulent pipe flow is considered, in which case experimental observa- 
tions offer additional possibilities for a comparison. 

5. Turbulent channel flow 
In  the case when the two plates considered in $ 2  are at rest, and the flow 

is driven by a constant pressure gradient - A,i, the relation that can be derived 
in place of relation (2) is 

(10 x q 2 )  + { ( o a ) z ) -  {Q8)2-Ap{0 'i8.Z) = 0. (35) 

The symmetry of the problem suggests that (ii8) is vanishing. Otherwise, the 
equation for the mean flow 

d 
-U = @-{Q&)-A,zi 
dz 

would lead to an asymmetric profile. For simplicity we shall neglect the term 
{ad) in the following discussion. When {ad) is retained the analysis will yield 
the same results, with {uw) = 0 as a property of the extremalizing solutions. 

For the Reynolds number Re, which is defined as the flow rate { i - U )  in 
the direction opposite to the pressure gradient, the relation 

holds. In  the previous analysis of channel flow in (I), the minimum of a functional 
corresponding to the pressure gradient A, was considered as a function of the 
parameter ,u = {u-iwz).  The present variational problem differs in that ,u 
corresponds to {uiw J12x) ,  and in that p has been subtracted in the definition 
of the functional: 
Given ,u 0 find the minimum R(,u) of the functional 

among all vector fields v that satisfy conditions (3), (4). 
R(p)  provides a lower bound for 2/12 -Re at a given value ,u of {i * Q84122),  

according to relations (35) and (37). This lower bound holds also at a given value 
A, of P(,u) = 412(R(,u) +,u), since it can be shown in the usual way that R ( p ) ,  
like P(,u), is a positive monotonically increasing function of p, with the property 
that the inverse function exists. 
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The definition (38) of the variational functional has the advantage that the 
analysis of $3  can be applied directly. As in the Couette case, we introduce 
the hypothesis that the minimum of (38) is reached for solutions v with vanishing 
x-dependence. Using the representation (8), (9) and the relation (12), and assum- 
ing cw = 0 as in the Couette case, we can rewrite 9 (v ;  p)  in the form 

which is identical with the definition (13) in the special case h(z) = J12z. The 
fact that we have assumed h(+) = h( - Q) in $3  does not cause any difficulty, 
since the analysis applies to the present case when 6 is replaced by - 6 for x < 0. 
A minor problem arises from the fact that the solution (25c) for G,, f$, 

G, = 1412219, Sl = 5 ]J124*, (39) 

leads to a divergent contribution in the dissipation term. This divergence has 
an artificial character, because the z-dependence of Gl and 8, in the interior has 
been neglected in the boundary-layer approximation (19), from which the solu- 
tion (39) results. By introducing a fourth-order polynomial for 6, in the neigh- 
bourhood of x = 0, and assuming g1 = 412 z/Gl, it can be demonstrated that the 
additional contribution in the dissipation term is indeed small compared to 
b?,uQi. In this connexion, it can also be shown that the fact that GI enters the 
dissipation term with higher derivatives than 8, causes a preference of g1 rather 
than 8, as antisymmetric function in x ,  wFch justifies the above choice. Accord- 
ingly, the class @Q(p) of the minima of W for solutions of the form (16) is given 
by the expression (30), with h, = 43, h, = &. We close the discussion of tur- 
bulent channel flow at this point and turn to the closely related case of pipe flow, 
for which more extensive experimental observations are available for the com- 
parison with the solution of the variational problem. 

6. Turbulent pipe flow 
For the discussion of turbulent flow in a pipe we introduce a cylindrical 

system of co-ordinates ( r ,  q5, x), and assume that the inner surface of the pipe 
is given by r = 1. The equations corresponding to (35) and (36) in the case of 
channel flow are 

( l V ~ ~ ~ ~ ) + ( ( ~ T a , ) z + ( ~ ~ ) ~ ) - ~ A ~ ( ~ ~ a , ~ )  = 0, 

The average indicated by a bar is taken over surfaces r = const., the angular 
brackets indicate the average over the infinite cylindrical volume contained by 
the pipe. A, is the absolute value of the pressure gradient in the direction opposite 
to the x co-ordinate. The Reynolds number is defined by 
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The following variational problem provides a lower bound for Re at a given value 
p of (ar@,r>. 

Determine the minimum P ( p )  of the functional 

at a fixed value ofp among all vector fields v that vanish at r = 1 and satisfy the 
equation of continuity V - v  = 0. The factor 4 2  has been introduced to give 
( (4 2 r ) 2 }  = 1. P(p)  provides the lower bound for 4 8  Re at a given value of (r@r@x), 
or at  given value of A,, as in the case of channel flow. For the solution of the 
variational problem, the hypothesis is used again that the absolute minimum 
of the functional (41) is reached by vector fields v independent of x. In  the present 
case, however, the hypothesis is not correct for all values of p, as has been shown 
by Joseph & Carmi (1969), who considered the case p = 0. Yet in the same paper 
it was also shown that the exact solution depends only slightly on x. Hence, 
we expect that the x-independent solution will approximate the absolute 
minimum of the functional (41) closely, if not exactly. We use the hypothesis to 
eliminate the equation of continuity by the introduction of the new variables 

As in the preceding cases, it is anticipated that zI,'uQ, vanishes. Using the following 
necessary condition for a minimum of the dissipation term, 

we consider in place of (41) the functional, 

which is homogeneous of degree zero with respect to v as well as to 0. L is used as 
abbreviation for 

The solution of the variational problem will be assumed in the form (16), 
with the difference that r replaces z, and that q5m is a function of q5 in the present 
case, satisfying the relation 
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Apart from the fact that a different geometry is considered, the functional (42) 
is identical with the functional (13) if h(z) is identified with 42r.  The effects of 
the geometry become less important when the boundary-layer approximation, 
with {, z ( ~ - Y ) ~ Q z  for n = 1, ..., N 

at boundary-layer co-ordinates, is considered. The boundary -layer approximation 
B of the functional (42) is described by the expression (19) if the interior parts of 
the dissipation terms, 

are replaced by ,uQib; (G: +>, ,up1 b:(a: r-2 >, 
respectively. 

P q l b K q  )> p q ( @ ) ,  

Thus the analysis of 5 3 can be applied directly in the present case by specifying 

h, = 4 2 ,  h, = 2 .  (43) 

In  doing so, we have regarded the wave-number u, as a continuous parameter, 
although only integer values are admissible. More detailed calculations show 
that the functions p(N)(,u), given by the expression (30) with the specification 
(43), change by a negligible amount if the analysis is limited to integer values a,. 
This fact holds, even though the interior wave-number u1 of the extremalizing 
solution is only two, as the relations (34), (43) suggest. 

The experimental observations are often plotted in terms of the friction co- 
efficient h = 4 .  A,  - Re-2. At a given Reynolds number, the inverse function 
p(P) of P ( p )  provides an upper bound for A, 

32 842,u( 4 8  Re) 
Re .Re2 A < - +  (44) 

The upper bound is given throughout the region of interest by the functions 
,W)(P) with rather high values of N for which the asymptotic formula (31) holds. 
Accordingly, the upper bound for h is essentially constant, like the upper bound 
derived without the constraint of the continuity equation (Busse 1968). For a 
comparison, experimental data by Nikuradse (1932) are shown in figure 4. 
Since the bounds have been derived under the assumption of large p, the first 
term on the right side of (44) has been neglected in the drawing. 

Extensive data about the structure of turbulent pipe flow are available and 
invite a comparison with the structure of the minimizing solution of the varia- 
tional problem. Because of the incomplete representation of this solution by the 
boundary-layer theory, it is difficult to obtain more than a qualitative comparison. 
Asymptotically the minimizing solution has the property that it depends only 
on pg near the wall. This behaviour is reflected in the wall-proximity law of 
Prandtl, which states that the turbulent flow becomes independent of the 
Reynolds number if the friction velocity U, and the length U,/v are used as scales 
for the velocity and the distance from the wall. In  the dimensionless description 
used in this paper, the friction velocity 0, is defined by 
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where the last equality is approached in the case of fully developed turbulence 
when the transport of momentum is carried almost entirely by the turbulent 
motions. In  figure 5 the asymptotic boundary-layer dependence of 0, given by 

1 

.T. 
6 

0.1 

0.0 

------------ 

00 
0 0  

- -_  

"., 

\ 
I I I I I 

102 103 104 105 106 

Re --f 

FIGURE 4. The upper bound for the friction coefficient h of turbulent pipe flow in compari- 
son with experimental data by Nikuradse (1932). The line labelled I denotes the asymptotic 
bound derived without the constraint of the continuity equation. 

has been plotted together with the observed similarity dependence $or the stream- 
wise component of the fluctuating velocity field. The functions 0 and @ have 
been taken from (C) and from Howard's paper. The velocity component normal 
to the wall shows a similar correspondence. Because of the lack of correlation, 
the r.m.s. values of the turbulent velocity field normalized by U, have much 
higher amplitudes than w and 8 in the corresponding normalization by 
0, = (.J2p)3. 
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In  describing the structure of turbulent pipe flow, Laufer (1955) arrives a t  
the following conclusions : 

(i) Throughout the whole cross-section, with the exception of the centre 
region, the rate of energy production a t  a point is approximately balanced by the 
rate of energy dissipation. 

3 
I I I I I 1 1 I I 

0 60 80 20 40 + (1 - T )  u, A 

FIGURE 5. The boundary layer dependence of extremalizing field 6’ = in comparison 

with the r.1n.s. value of the fluctuations of the streamwise velocity component Gr/6, 
Ineastired by Laiifcr (1955). 

n 

(ii) All the various energy rates reach a sharp maximum near the edge of the 
laminar sublayer. 

These statements hold equally for the minimizing solution of the variational 
problem. The first statement corresponds to  the balance described by the 
Euler equations, the second statement reflects the dominating contribution 
in the functional from the Nth boundary layer. A closer inspection shows 
that the dissipation rate of the fluctuating velocity field is inversely propor- 
tional to the distance from the wall, like the contributions of the boundary 
layers to the dissipation term in the functional (19). The observed fact that 
the total dissipation of the fluctuating velocity field is approximately equal to 
the dissipation of the mean flow corresponds to the basic balance between the 
two terms of the functional (42). 

The profile of the mean flow does not show a similarity between the realized 
turbulence and the minimizing solution as clearly as in the Couette case. The 
exact dependence on r will be strongly influenced by the higher-order corrections, 
which have been neglected in the boundary-layer approximation. We mention 
in particular the removal of the divergence of (d/dr)ol,  (d2/dr2)iEl a t  the centre, 
which was discussed in the analogous case of channel flow. According to (24b) ,  
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(25c )  and (40), a parabolic profile for the minimizing solution is obtained asymp- 
totically: 

dz - - p ( w ( N ) @ N )  -d1/2p(w(N)@N)1/2r)) - J2 r$%h')(p) 
dr 

E - $ 4 2  rP(m)(p) = - r<Uiw'>. 

This profile joins the boundary close to the wall at $ of its maximal value at  
the pipe centre, which is about the same region as in the case of the realized 
turbulence. In  the case of channel flow, the value is replaced by f. 

0 10 20 30 40 50 60 70 
+(To - ?)/V u, 

FIGURE 6. R.1n.s. values of the fluctuating corriponent of the velocity in streamwise 
direction, $z/i?T, and normal to the wall, measured by Lanfer (1955) a t  
Re = 2.5 x lo*( +) and Re = 2.5 x lo5( x ). For comparison the r.m.s. values of the tem- 
perature fluctuations 0 and of the vertical velocity component $, which were measured 
in turbulent thermal convection by Deardorff &: Willis at  Re = 2.5 x 106(o) and 
Re = 1.0 x l O 7 ( 0 ) ,  are plotted in units resulting from the correspondence of the varia- 
t,ional problems. 

We have pointed out at  several instances the similarity between the variational 
problem in the case of thermal convection and in the case of shear flow. If in 
fact the physically realized turbulence approaches the structure of optimal trans- 
port, a correspondence between the data of turbulent convection and of turbulent 
shear flow should exist. To exhibit this correspondence, measurements by Dear- 
dorff & Willis (1967) of the r.m.5. values of the fluctuating temperature field # 
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and of the vertical velocity field 8 in turbulent convection have been plotted in 
figure 6 on top o f  a figure taken from Laufer’s paper. No arbitrary adjustment 
of the scales has been assumed. 

In  the present usage, the parameter p corresponds to 07212/2 according to re- 
lation (45), while the analogous parameter p@) in the variational problem of 
(C) corresponds to the dimensionless turbulent heat transport H,. Accordingly, 
the characteristic boundary-layer scale dN = (4*/3/v)i/U, defined by the asymp- 
totic expressions (33 ) ,  (34) has been identified with the corresponding scale 
d$$) = (/?49/H,)* given by the asymptotic extremalizing solution in the case of 
thermal convection. Similarly, the scales for the amplitudes of and & have 
been determined. Although the experimental scatter of the data in thermal 
convection is rather high, it can be concluded from figure 6 ,  first, that a simi- 
larity law for turbulent convection is valid in analogy to Prandtl’s law of the 
wall in turbulent shear flow, and secondly, that both similarity laws are essentially 
identical, if the units suggested by the extremalizing transport mechanism are 
used. 

7. The limiting stability property of turbulent shear flow 
The similarity, which was found in the comparison between the observed staruc- 

ture of turbulence and the minimizing solution of the variational problem, 
suggests that the realized turbulent shear flow represents the flow with maximum 
momentum transport, or with maximum dissipation at  a given Reynolds number 
among all possible solutions of the Navier-Stokes equations of motion. We do 
not think that this fact indicates the existence of an extremum principle for 
turbulent flow which is valid in an exact sense. The tendency towards the pro- 
perty of maximum momentum transport seems rather to be the consequence 
of the instability of the laminar sublayer, as the following consideration suggests: 

A laminar flow usually becomes unstable if the characteristic Reynolds number 
exceeds a certain critical value 22,. If a criterion of this kind is applied to the 
laminar sublayer adjacent to the wall in which the momentum transport M 
is carried by viscous stresses, we obtain 

Re8 2 R, 

as the criterion for instability. S denotes the thickness of the sublayer, Re 
can be used as an estimate of the velocity change across the sublayer. Since S 
is related to the momentum transport, M z Re/S, the criterion for instability 
can be rewritten in the form, Re2 2 R,M. 

Accordingly, the laminar sublayer will be unstable unless the momentum trans- 
port grows like Re2. On the other hand, we have found that M can not grow 
stronger than proportional to Re2 asymptotsically. Thus, the momentum trans- 
port is forced to grow like Re2, which appears to be in agreement with the experi- 
mental observation in the Couette case. The measurements of turbulent pipe 
flow seem to indicate a logarithmic decrease of the friction coefficient in place of a 
constant asymptotic value. Since the velocity of the mean flow just outside the 
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laminar sublayer is rather small compared to Re, the above instability mech- 
anism may still be relevant without forcing the momentum transport to approach 
the dependence of the upper bound. 

The idea that turbulent flow can be characterized by the limitations of an 
optimal transport mechanism on one hand, and by a stability criterion on the 
other, is related to earlier theories of turbulence. We mention in particular 
Malkus’ (1956) theory, which was successful in deriving a number of features of 
turbulent shear flow from the hypothesis that turbulence can be characterized 
by a maximum dissipation at a given Reynolds number. In place of a relation of 
the form (2) Malkus has used the following two additional hypotheses as con- 
straints: first, that the mean flow is stable in terms of the linear stability analysis 
described by the Orr-Sommerfeld equation, and secondly, that the smallest 
scale of motion corresponds to marginally stable disturbances of the mean flow. 
The latter hypothesis is related to the above interpretation of turbulent shear 
flow in terms of the stability of the viscous sublayer. The first hypothesis, 
however, is not reflected in the structure of the extremalizing field which exhibits 
profiles of the mean flow of the same form as the profile of the unstable laminar 
flow. 

The extremalizing field of the variational problem shows, according to (34), 
an obvious relation to Prandtl’s mixing-length theory, which states that the 
characteristic scale of turbulent eddies increases proportional to the distance 
from the boundary. An essential difference, however, is the fact that the struc- 
ture with the property of optimal transport has discrete scales. These discrete 
scales may be present in turbulent shear flow, although it will be difficult to 
demonstrate their existence experimentally. In the case of turbulent thermal 
convection, experimental evidence for discrete scales has been found by Dear- 
dorff & Willis (1967). 

The experiments on thermal convection exhibit yet another related pheno- 
menon, namely, discrete transitions in the dependence of the heat transport on 
the Rayleigh number. In the regime of turbulent convection, the transitions were 
discovered by Malkus (1 954). The transitions parallel qualitatively the transi- 
tions by which the solutions of the Euler equations dN), B(N)  take turns in providing 
the upper bound for the heat transport. The close relation between the turbulent 
processes of heat and momentum transport suggests that the phenomenon of 
discrete transitions corresponding to distinct instabilities of the laminar sub- 
layer exists in turbulent shear flow, too. 

8. Conclusion 
The bounds that have been derived in the preceding sections depend strongly 

on the region adjacent to the rigid boundary. Neglecting the effects of the 
geometry of the interior, we may conclude that the exchange of momentum 
between turbulent shear flow and a rigid boundary grows asymptotically pro- 
portional to the square of the Reynolds number or less. This conclusion implies 
the negative result that the upper bound on the momentum transport obtained 
from the variational problem, without the constraint of the continuity equation 
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or by even simpler estimates, cannot easily be improved upon with respect to its 
qualitative dependence. Quantitatively, the continuity equation leads to an 
improvement by a factor of about 7 of the result without this equation. The most 
interesting consequence of the equation of continuity as constraint in the varia- 
tional problem is the fact that the extremalizing field exhibits a cascade of 
discrete scales depending on the distance from the boundary layer. The simi- 
larity between the variational problems for turbulent shear flow and for tur- 
bulent thermal convection suggests that the multiple boundary-layer structure 
is a common feature of the vector fields extremalizing the turbulent transport 
of a quantity from a rigid boundary. The comparison with the experimental 
observations indicates in all cases considered so far that the realized turbulent 
flow tends to approach the structure of the extremalizing transport mechanism. 
The extremalizing vector field will show an even closer relation to the observed 
turbulence when additional constraints derived from the basic equations are 
introduced in the variational problem. Finally, the realized turbulent Aow may 
be approached in this process, although the Euler equations are likely to become 
almost as difficult to solve as the original equations of motion. 
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